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Abstract: Fetal alcohol spectrum disorder (FASD) encompasses neurodevelopmental disabilities
and physical birth defects associated with prenatal alcohol exposure. Previously, we attempted
to identify epigenetic biomarkers for FASD by investigating the genome-wide DNA methylation
(DNAm) profiles of individuals with FASD compared to healthy controls. In this study, we generated
additional gene expression profiles in a subset of our previous FASD cohort, encompassing the most
severely affected individuals, to examine the functional integrative effects of altered DNAm status
on gene expression. We identified six differentially methylated regions (annotated to the SEC61G,
REEP3, ZNF577, HNRNPF, MSC, and SDHAF1 genes) associated with changes in gene expression
(p-value < 0.05). To the best of our knowledge, this study is the first to assess whole blood gene
expression and DNAm-gene expression associations in FASD. Our results present novel insights into
the molecular footprint of FASD in whole blood and opens opportunities for future research into
multi-omics biomarkers for the diagnosis of FASD.

Keywords: FASD; fetal alcohol spectrum disorder; gene expression; DNA methylation; eQTM

1. Introduction

Fetal alcohol syndrome (FAS) is a congenital syndrome characterized by neurodevel-
opmental disabilities and physical characteristics associated with prenatal alcohol exposure
(PAE). FAS is the most severe entity within the fetal alcohol spectrum disorders (FASD),
and its clinical diagnosis is established with the Four-Digit Diagnostic Code when sufficient
severity in four key diagnostic areas is present: PAE, growth failure, FAS-specific facial ab-
normalities, and neurological features such as intellectual impairment [1]. Individuals who
do not display all characteristics may be diagnosed with partial FAS (pFAS), alcohol-related
neurodevelopmental disorder (ARND), or alcohol-related birth defects (ARBD).

Diagnosing FASD is crucial for providing the best possible support to children and
parents, preventing further alcohol-exposed pregnancies, and breaking the intergenera-
tional cycle of FASD. However, the diagnosis of FASD remains a major clinical challenge
for three main reasons [2]: (1) signs and symptoms of FASD considerably overlap with
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other congenital neurodevelopmental disorders; (2) often, there is limited or unclear infor-
mation about alcohol consumption during pregnancy; and, particularly, (3) the absence of
a definitive diagnostic marker for FASD. Consequently, many individuals with FASD are
misdiagnosed or undiagnosed [3].

Previously, we attempted to identify an epigenetic diagnostic marker for FASD by
investigating the genome-wide DNA methylation (DNAm) profiles of individuals with
FASD compared to healthy controls [4]. Four genomic regions with an altered DNAm
status were detected. The identified loci were located within or nearby the GLI2, TNFRSF19,
DNTA, and NECAB3 genes, which have molecular functions related to symptoms of FASD.
There is still uncertainty, however, as to whether and how these DNAm alterations are
involved functionally in the pathophysiological mechanism of FASD. There is a need for
a more comprehensive description of FASD DNAm associations and their downstream
functional effects to unravel their role in FASD pathogenesis. Therefore, the main goal
of this study was to further characterize the functional molecular footprint of FASD by
assessing the (functional) correlation between DNAm changes and gene expression.

DNAm is a dynamic process of reversible changes to DNA, namely, the addition of a
methyl group to cytosine at cytosine-guanine dinucleotides (CpGs), which may affect the
level of gene expression in several ways. For example, DNA hypermethylation of gene
promoters may block the transcriptional machinery, while hypermethylation of gene bodies
or annotated regulatory enhancer sites may result in the increased expression of a gene [5].
It is not known whether the previously identified FASD DNAm associations lead to gene
expression changes. Here, we generated additional gene expression profiles in a subset
of our previous FASD cohort, encompassing the most severely affected individuals [4], to
examine the functional integrative effects of altered DNAm status on gene expression—a
so-called expression quantitative trait methylation (eQTM) analysis. Our results shed light
on the underlying molecular and biological processes relating to FASD DNAm alterations.

2. Results
2.1. Study Cohort

This study used samples and data previously collected by Cobben et al. for investigat-
ing the DNAm signature of individuals with FASD compared to healthy individuals [4].
A selection criterion was applied to the original FASD cohort, decreasing sample hetero-
geneity, aiming to find the most robust molecular associations: the most severely affected
FASD-affected individuals, with ≥three points on the Four-Digit score, were included in
the analyses. A total of 12 of 46 individuals with FASD met the selection criterion. RNA
was available for 51 of 92 non-PAE controls, who were subsequently included. The mean
age in years (±standard deviation) of individuals with FASD was 6.95 (±3.68), and that of
controls was 13.20 (±2.94). In total, 7/12 (58.3%) of individuals with FASD were male, and
33/51 (64.7%) of controls were. All selected participants were of Polish descent.

2.2. DNA Methylation Data

Blood DNAm HumanMethylation450K (HM450K) data of the 12 individuals with
FASD and 51 healthy controls passed all MethylAid quality control checks (default set-
tings) [6]. Correlation plots of the first eight principal components (PCs) with metadata
(sex, age, and relative blood cell type counts) and technical data (array position and
slide) showed that subject heterogeneity considerably affected DNAm data (Supplemen-
tary Figure S1A,B). Thus, metadata were included as variables in subsequent analyses
of DNAm and gene expression data. Technical data marginally influenced DNAm data
(Supplementary Figure S1A). Principal component analysis (PCA) did not indicate unex-
pected separate clustering of samples (Supplementary Figure S1C). The variance explained
by PC 1–8 is given in Supplementary Figure S1D.
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2.3. Epigenome-Wide Loci Associated with FASD

Differential methylation analysis revealed 179 differentially methylated positions
(DMPs; CpGs with a significant methylation level difference between FASD and healthy
controls) associated with FASD (Supplementary Table S1.1). DMPs are visualized in a
volcano plot in Supplementary Figure S2. A total of 51 DMPs were hypomethylated
(methylation levels were lower in individuals with FASD compared to healthy controls),
and 128 DMPs were hypermethylated. According to the UCSC annotation, 77 DMPs were
associated with the promoter region of a gene (defined as CpG annotation to 5′UTR, the
1500 bp range upstream the transcription start site, or the first exon of a gene) (Supple-
mentary Table S1.1). Since the studied cohort represents a subset of a larger cohort [4], we
conducted a sensitivity analysis of the current epigenome-wide association study (EWAS)
by evaluating the overlap of DMPs with the previously reported (full cohort) EWAS,
employing the same statistical method (lmfit). Of the 179 DMPs, 88 (49.2%) were also
significant in the larger EWAS, while 91 CpGs did not reach genome-wide significance or
were not present in the top 2000 CpGs (Supplementary Table S1.1) [4]. Notably, the top
10 DMPs of the current EWAS were also significantly associated in the previous EWAS
(Supplementary Table S1.1).

Twenty-one differentially methylated regions (DMRs; regions spanning at least two CpGs,
with a significant methylation level difference between FASD and healthy controls) were iden-
tified, of which five were hypomethylated and sixteen were hypermethylated (Supplementary
Table S1.2). Fifteen DMRs could be annotated to a coding gene, while six were annotated to
intergenic regions or microRNAs. Five DMRs from the previous (larger) EWAS were repli-
cated [4]. Overall, these results indicate considerable overlap between both EWAS analyses.

2.4. Absent Differential Gene Expression in Whole Blood-Derived RNA of Individuals with FASD

Next, RNA extracted from whole blood samples was sequenced. The RIN (RNA
integrity number) was sufficient (RIN ≥ 7.0) in 57 samples. Six samples had subpar
RIN values; however, quality assessment with FastQC did not yield any inconsistencies.
At least 25 million reads were generated for each sample, which were mapped to the
human reference transcriptome and quantified. After filtering steps, selecting for expressed
genes, 17,054 genes remained for the analysis, approximately 82% of possible genes. An
explorative PCA (using the count data of remaining genes) did not indicate unexpected
separate clustering of samples (Supplementary Figure S3). Surprisingly, differential gene
expression analysis (correcting for batch effects and metadata) did not identify genes with
a false discovery rate (FDR) < 0.05. A total of 631 genes had a nominal p-value of < 0.05
(Supplementary Table S1.4).

2.5. Weighted Correlation Network Analysis Identified Clusters of Genes Associated with FASD

To explore biological pathways affected in FASD, we carried out a weighted correlation
network analysis (WGCNA), exposing the underlying organization of FASD transcrip-
tomics based on gene co-expression networks. RNA sequencing (RNA-seq) data were
filtered for lowly expressed genes and residualized to account for batch effects (age, gender,
and (DNAm) estimated blood cell type distribution). We identified several correlation
patterns among genes across our RNA-seq data, which could be summarized in 10 modules
(Supplementary Figure S4). One of these modules showed a significant negative correlation
with FASD (module brown: r = −0.29, p-value = 0.02). Gene ontology (GO) gene set over-
representation analysis (ORA) of the genes in module brown (n = 1053) showed significant
overrepresentation across several domains of biological processes and molecular functions
(Figure 1). Most of these domains could be segmented within immune system processes,
consistent with the previously described blood phenotype of FASD [7].
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Figure 1. Hierarchical clustering of significantly overrepresented GO terms in module brown. Seman-
tic cluster tags are given to the right of each cluster. Most GO terms are related to immune processes.
We believe this signifies immune system abnormalities and is a reflection of the blood phenotype of
FASD, which is characterized by an increased risk of infections.

2.6. Cis-Regulatory DNAm Elements Associated with FASD

To explore the presence of potential cis-regulatory DNAm elements (CpGs regulating
transcription of neighboring genes) in FASD, we first attempted to match DMRs with
RNA-seq results (Supplementary Table S1.5); however, since there were no differentially
expressed genes with an FDR < 0.05, we could not match DMRs with significant differ-
entially expressed genes at a genome-wide significance level. Three genes—ABR, GNAL,
and SEC61G—with nominal significant differential expression could be matched with an
associated DMR (Supplementary Figure S5). None of these genes were in the top 100 genes
of the RNA-seq results.

Next, we employed a robust computational method to examine FASD cis-eQTMs.
Median methylation levels of DMRs were correlated with log-transformed counts of associ-
ated genes. A more relaxed FDR cut-off of < 0.1 was used to select DMRs for this analysis
(Supplementary Table S1.3). Six significant eQTMs were identified (Figure 2, Table 1 and
Supplementary Table S1.6), comprising, in total, 21 CpGs. Five eQTMs represented a
negative correlation (Table 1); in other words, a lower DNAm of DMR was associated
with increased gene expression. DMRs linked to these eQTMs were hypomethylated in
the FASD cohort compared to healthy controls. The gene expression of genes associated
with these DMRs was increased in FASD (not at the genome-wide significance level), as
expected. The eQTM with a positive correlation was associated with a hypermethylated
DMR in FASD, with increased gene expression (Table 1).
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Figure 2. eQTMs. Top six significant DMR–gene expression eQTMs associated with FASD. x-axes
represent gene counts, y-axes represent median β-values of the eQTM-associated DMR. Each sample
is represented by a dot, where blue dots are samples of individuals with FASD and red dots are
samples of healthy controls. Relationships between DMR methylation and gene expression are given
by linear correlation lines. The thick blue line represents the eQTM from the combined analysis
of FASD and control data, for which Pearson’s correlation coefficient is also given. Thin lines are
group-specific correlations.
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Table 1. DMR–gene expression eQTMs.

Position Gene Correlation
Coefficient p Value DMR Feature DMR Direction Gene Expression

Direction

chr7:54827528-54827677 SEC61G −0.44 2.29 × 10−3 Promoter Hypo-methylated Overexpression

chr10:65280473-65280961 REEP3 −0.38 3.69 × 10−3 Promoter Hypo-methylated Overexpression

chr19:52391078-52391090 ZNF577 −0.34 8.33 × 10−3 1st exon Hypo-methylated Overexpression

chr10:43891459-43892075 HNRNPF −0.32 1.55 × 10−2 Gene body Hypo-methylated Overexpression

chr8:72758461-72758701 MSC 0.29 1.98 × 10−2 Promoter Hyper-methylated Overexpression

chr19:36484731-36485360 SDHAF1 −0.28 3.12 × 10−2 Promoter Hypo-methylated Overexpression

3. Discussion

For over 50 years, FASD has been a recognized developmental disorder, but still,
little is known about the exact molecular pathophysiological mechanism underlying the
FASD phenotypes. Recent studies investigated patterns of aberrant DNAm in FASD and
provided valuable insight into certain aspects of FASD [4,8,9]. Since epigenetic factors,
such as DNAm, are strongly associated with the regulation of gene expression, we sought
to explore gene expression in FASD in an attempt to further clarify FASD pathogenesis
underpinnings. Here, we present the first human whole blood RNA-seq data of FASD
individuals with ≥ three points in the Four-Digit score. Our results indicate a limited effect
of FASD on whole blood transcriptomics. However, the combination of DNAm and gene
expression data in an eQTM analysis provided a set of significant clusters of methylation
probes correlated with gene expression, which present further insights into the molecular
footprint of FASD in whole blood.

In the eQTM analysis, we identified six DMRs associated with changes in gene expres-
sion (p-value < 0.05) located near the following genes: SEC61G, REEP3, ZNF577, HNRNPF,
MSC, and SDHAF1. This analysis allowed us to identify eQTMs mediated specifically by
FASD, since eQTMs were inferred from FASD DMR associations instead of unsupervised
CpG-gene expression couples. In four eQTMs (mapped to SEC61G, REEP3, HNRNPF, and
SDHAF1), the gene methylation-expression correlation was apparently completely driven
by the FASD cohort. The eQTMs mapped to ZNF577 and MSC were seemingly correlations
present in healthy population but lost in individuals with FASD. These results suggest the
uncoupling of normal DNAm-gene expression associations in FASD, which calls for further
investigation.

We hypothesize that the identified FASD-mediated whole blood eQTMs may serve
as a combined (multi-layered omics) biomarker. Further work is required to establish the
viability of such a biomarker. Two of the six genes associated with an eQTM—HNRNPF
and REEP3—stand out due to their possible biological relevance in FASD, and they are
discussed below.

In view of HNRNPF, we found a negative correlation between the DNAm level of the
gene body DMR (chr10:43891459-43892075) and the expression of the gene, i.e., with lower
DNAm levels, gene expression is increased. Previously, a negative association between the
DNAm of the HNRNPF gene and alcohol consumption in whole blood has been reported,
which is in line with the hypomethylated DMR we observed [10]. The HNRNPF (#601037
OMIM) gene encodes Heterogeneous Nuclear Ribonucleoprotein F (HNRNPF), which
belongs to the family of heterogeneous nuclear ribonucleoproteins (hnRNPs). HnRNPs
form complexes with heterogeneous nuclear RNA and are functionally associated with
precursor–messenger RNA (pre-mRNA) splicing. The alternative splicing of genes may
have drastic consequences for gene function, and since hnRNPs are ubiquitously expressed
(according to https://www.proteinatlas.org/), pathogenic variants in hnRNP genes may
lead to variable neurodevelopmental disorders [11]. The clinical characteristics are similar
to FASD, including intellectual disability, attention deficit hyperactivity disorder, growth
delay, and facial dysmorphisms. However, pathogenic variants in hnRNPs comprise loss-

https://www.proteinatlas.org/
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of-function variants, while the eQTM we observed leads to HNRNPF overexpression in
FASD. HNRNPF pathogenic variants have previously not been associated with a clinical
phenotype. In the context of the abovementioned previous findings and our results, we
hypothesize that the DMR in HNRNPF may represent a direct functional effect driven by
PAE, contributing to the manifestation of FASD during early development through the
alternative splicing of multiple genes. Considering our results (in a postnatal FASD cohort)
we furthermore hypothesize that, later in life, these effects remain to echo functionally
in the whole blood of FASD patients. It remains to be investigated whether FASD is
indeed associated with alternative splicing and if HNRNPF drives the pathophysiology of
alternative splicing.

Considering REEP3, we also found a negative correlation between the DNAm level
of the REEP3 promoter DMR (chr10:65280473-65280961) and the expression of the gene.
REEP3 (#609348 OMIM) encodes Receptor Accessory Protein 3 (REEP3), which belongs
to the Receptor Expression Enhancing Proteins (REEP) family. A recent study showed an
association between the DNAm of REEP3 at birth and periconceptional folate intake [12]. A
DMR located in an intergenic region, downstream of REEP3 (chr10:65733092-65733575), was
shown to be one of the ten most responsive DMRs to folate supplementation [12]. While
the DMR of the currently detected eQTM does not overlap directly, we hypothesize it could
be highly relevant for FASD pathogenesis. Previously, it has been reported that chronic
alcohol consumption was associated with an impaired folate absorption [13]. Furthermore,
adverse early development outcomes in newborns with PAE have been linked to defective
folate absorption [14,15]. Therefore, it is plausible that the REEP3 eQTM represents an
intersection of a “double hit” effect of PAE, i.e., the adverse effects of PAE plus PAE-induced
impaired folate absorption. This is an important issue for future research in the context of
FASD prevention with folate acid supplementation [16].

Reviewing the whole blood gene expression patterns of individuals with FASD com-
pared to healthy controls, no genes with significant (FDR < 0.05) differential expression
were detected. This result is likely to be related to the type of samples used for analysis.
Since FASD is mainly considered a neurodevelopmental disorder, the biggest effect on
gene expression can be expected in brain tissue (during prenatal development) and not in
later-life whole blood samples. Contrived models of FASD in monkeys have indeed shown
severe transcriptional effects in neuronal cells [17]. Nonetheless, FASD is characterized by a
blood phenotype entailing increased susceptibility to infections [7,18], so a transcriptional
effect on immune cells in whole blood can be imagined. We believe we lacked the power to
identify differentially expressed genes since this study was not designed to specifically ex-
plore the implications of FASD on the blood phenotype, as there was no particular selection
for immune-compromised individuals with FASD. However, in dissecting the RNA-seq
data in a WGCNA, we were successful at identifying a cluster of co-expressed genes sig-
nificantly associated with FASD, even after correction for relative cell type distribution.
The functional annotation of this cluster in a gene set overrepresentation analysis showed
associations with several immune processes. The future study of (selected) individuals
with FASD is needed to confirm these associations, which could also provide insight into
how PAE influences immune system physiology.

For the most part, DNAm is tissue- and cell-specific and associated with tissue- and
cell-specific regulatory elements. However, whole blood is frequently used as a proxy tissue
to extrapolate DNAm patterns and hypotheses for phenotypes relating to other tissues. For
some genomic regions, DNAm is consistent between tissues: in one study of brain, thyroid
and heart DNAm patterns, 9926 genomic regions with non-tissue-specific DNAm were
identified, which also correlated with gene expression across tissues [19]. Among these
regions were the currently identified SEC61G, REEP3, and MSC genes. However, to the
best of our knowledge, there is no such data for the comparison of blood and brain DNAm
patterns. The results of the current study with respect to the biological inference of FASD
brain/developmental pathophysiology therefore need to be interpreted with caution.
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Our work presents several limitations. Hypotheses on the pathophysiology of FASD,
as concluded from this study, are based on biological inference and warrant cautious
interpretation. Second, as discussed above, the findings of this study may be somewhat
limited due to the use of whole blood samples for eQTM analysis. Third, this study only
included participants of Polish descent. Future research will need to be undertaken to
confirm the eQTM associations in different populations. Fourth, although age was included
as a covariate in both the DNAm and RNA-seq analysis, we cannot exclude a residual bias
stemming from age differences between cases and controls. Lastly, we could only perform a
cis-eQTM analysis, since there was limited power for trans-eQTM analysis (DNAm-related
associations with the expression of remote genes).

The present study on DNAm and gene expression profiles within a cohort of individ-
uals with FASD and healthy controls provided, as aforementioned, a limited number of
functional molecular leads. Future studies in this context may focus, therefore, on maxi-
mizing the sample size in order to also detect low-effect functional mechanisms of FASD.
Moreover, additional omics layers (e.g., genomics and metabolomics), in combination with
state-of-the-art integrative algorithms, may contribute to the elucidation of underlying
molecular mechanisms, improving the diagnosis and even prognosis of FASD [20]. Al-
though challenging to obtain, PAE severity and duration, as well as the level of FASD
severity (Four-Digit score), should ideally be incorporated in such analyses. Alternatively,
for unraveling the molecular mechanism of FASD, future research may focus on ex vivo and
in vitro FASD models. For example, human immortalized pluripotent stems cells (hiPSCs)
can be challenged at virtually all stages during development. Based on such hiPSCs, the
construction of complex brain organoid models may provide important leads regarding
the molecular function of neurons and their interaction with other types of brain cells
during early development. This concept was recently reported by Arzua et al. and Zhu
et al. [21,22]. In order to study such complex models in detail, further investigations should
apply state-of-the-art spatial single cell-based high-throughput sequencing of RNA.

In summary, the aim of this study was to evaluate the influence of FASD-associated
DNAm changes on gene expression in whole blood and its implications for our comprehen-
sion of FASD pathology. This research is the first to assess whole blood gene expression and
eQTMs in FASD, and it has set the stage for future research into multi-omics biomarkers.

4. Materials and Methods
4.1. Subject and Sample Collection

All subjects included in this study involved a subset of a previously described co-
hort by Cobben et al. [4]. Informed consent was obtained from all subjects and/or legal
guardians. The study was approved by the medical Ethical Committees of the Wroclaw
University Hospital and the Medical University of Bialystok, Poland and by the medical
Ethical Committee of the Academic Medical Center, Amsterdam, The Netherlands [4]. The
present cohort involved whole blood DNA and RNA samples obtained from 12 individuals
diagnosed with FASD and 51 healthy individuals. The selection criteria of individuals with
FASD were defined according the Four-Digit score, where participants were included if
they scored ≥ three points for alcohol exposure, central nervous system dysfunction, facial
abnormalities, and growth faltering.

4.2. Bioinformatics Analyses

Analyses were carried out with Bioconductor (v3.15.2) packages in R (v4.2).

4.3. DNA Methylation Profiling and Analysis

DNA was extracted from whole blood using the FlexStar (Autogen, MA, USA) in-
strument, according to the manufacturer’s protocol. DNA quantity and quality control
and DNAm profiling were performed by GenomeScan in Leiden (ISO/IEC 17025 certi-
fied). Briefly, bisulfite-converted DNA was amplified and subsequently hybridized on
the HM450K array, according to the manufacturer’s protocol. Raw data quality control
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was performed using MethylAid (v.1.30; default settings) [6]. Probes annotated to the
allosomes, known to involve genetically polymorphic sites (minor allele frequency > 0.01),
or susceptible to cross-hybridization were removed from the dataset. Next, the data were
normalized using the preprocessNoob. Blood cell type estimation was performed using
the method of Houseman et al. [23]. PCA (performed with the prcomp function) was
performed in order to explore and identify possible confounding factors; technical and
metadata were correlated with the first eight PCs. Differentially methylated positions
(DMPs) were detected using minfi (v.1.42), applying the linear model function limma (lmfit,
v.3.52.4) package [24,25]. DMP analysis was based on normalized β-values. Relative blood
cell distribution estimations, including the CD8+, CD4+, natural killer cell, B-cell, mono-
cyte, and granulocyte, were included as variables in the model formula. DMPs with an
FDR < 0.05 were considered as genome-wide significant. Differentially methylated regions
(DMRs) were detected using the DMRcate package (v.2.10) [26]. DMRs were identified us-
ing the following criteria: a minimum of two consecutively significant DMPs (FDR < 0.05)
within a 1000 nucleotide range, and for integrative/eQTM analyses, a minimum of two
consecutively significant DMPs (FDR < 0.1) within a 1000 nucleotide range. DMRs were
ranked based on Stouffer’s coefficient (SC). DMRs with an SC < 0.05 were considered as
genome-wide significant [26].

4.4. RNA Sequencing and Analysis

RNA was isolated from PAXgene whole blood specimens. RNA was extracted using
the RNA mini kit (cat# 763134) (Qiagen, Hilden, Germany), conforming to the manufac-
turer’s protocol. RIN values were obtained, conforming to the manufacturer’s protocol,
using a Fragment analyzer 5200 (Agilent Technologies, Santa Clara, CA, USA). To obtain
a gene expression profile, libraries of complementary DNA (cDNA) to messenger RNA
(mRNA) were generated (NEBNext Ultra II Directional RNA Library Prep Kit for Illu-
mina, NEB #E7760S/L). Generated libraries were (SE50) sequenced using the NovaSeq
6000 (Illumina, San Diego, CA, USA). Image analysis and base-calling were carried out
using an Illumina data analysis pipeline involving Real-Time Analysis (RTA) and bcl2fastq
(v2.20). The quality of the data was assessed with FastQC (v0.11.9) [27]. Alignment to
the hg38 human genome was performed using STAR (v2.7.3) with the default parame-
ters [28]. SAMtools (v1.11) and featureCounts (v2.0.1) were used for the alignment and
count quantification [29,30]. Additional QC metrics were generated using MultiQC (v1.9)
to check samples with an RIN < 7.0 manually. PCA (performed with the prcomp function)
was employed for the analysis of relationships between samples and outlier detection.
The analysis of differential gene expression was performed using DESeq2 (v1.36.0) [31].
The abovementioned relative blood cell distributions (inferred from DNAm data) were
included as covariates in the model formula.

4.5. Weighted Correlation Network Analysis

WGCNA was carried out with the WGCNA package (v1.71) [32]. Variance stabilizing
transformation (VST) normalized gene counts of genes with a non-zero count in at least
90% of samples were used as the input for WGCNA to prevent the noise of lowly expressed
genes. The sources of variation (age, gender, and blood cell type distribution) were corrected
for with the removeBatchEffect function of limma (v3.46.0) [24]. Based on the network
topology of the data, we chose a soft thresholding power β of 6, to which co-expression
similarity was raised to calculate adjacency. Then, the standard Pearson correlation method
was used to construct signed networks (modules) of co-expressed genes. The correlation
among the FASD phenotype and identified modules was studied using module eigengene
networks. We considered correlations with p-values < 0.05 significant.

We performed gene set ORA with the clusterProfiler package (v4.6.0) [33], employing
the default settings, using all WGCNA input genes as the background, and testing for
GO terms. We considered terms with an FDR < 0.05 significantly overrepresented. The
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treeplot function was used for hierarchical clustering based on pairwise similarities of the
overrepresented terms.

4.6. Expression Quantitiative Trait Mehtylation (eQTM) Analysis

eQTM analysis was performed as previously described [34]. Briefly, for each DMR
in each sample, the median methylation level was calculated. Next, Pearson’s correlation
coefficient was calculated between the DMR methylation medians and log-transformed
counts of the associated gene. The 95% confidence intervals were calculated based on
100,000 bootstraps. p-values were obtained by comparing correlation coefficients with a
null distribution using a resampling approach. DMR–gene correlations with p < 0.05 were
considered significant. The results of the integrative methylation expression analysis were
reported according to GRCh37 (hg19).
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